Manara - Qatar Research Repository
Browse
membranes-09-00029.pdf (31.43 MB)

Antibacterial Properties of Polysulfone Membranes Blended with Arabic Gum

Download (31.43 MB)
journal contribution
submitted on 2024-03-19, 08:09 and posted on 2024-03-19, 08:10 authored by Souhir Sabri, Ahmad Najjar, Yehia Manawi, Nahla Eltai, Asma Al-Thani, Muataz Atieh, Viktor Kochkodan

Polysulfone (PS) membranes blended with different loadings of arabic gum (AG) were synthesized using phase inversion method and the antibacterial properties of the synthesized membranes were tested using a number Gram-negative (Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial species. It was shown that AG addition to the dope polymer solutions essentially changed porous structure, hydrophilicity and zeta potential of the cast PS/AG membranes. These changes were due to the amphiphilic properties of AG macromolecules that contained negatively charged hydrophilic residues. A pronounced decrease in bacterial attachment was seen in the field emission scanning electron microscopy (FESEM) images for PS/AG membrane samples compared to both commercial (Microdyn-Nadir) and bare PS (without AG) membranes. AG loading dependent trend was observed where the prevention of bacterial colonization on the membrane surface was strongest at the highest (7 wt. %) AG loading in the casting solution. Possible mechanisms for the prevention of bacterial colonization were discussed. Significantly, the inhibition of bacterial attachment and growth on PS/AG membranes was observed for both Gram-positive and Gram-negative bacterial models, rendering these novel membranes with strong biofouling resistance attractive for water treatment applications.

Other Information

Published in: Membranes
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/membranes9020029

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU
  • College of Health and Life Sciences - HBKU
  • Qatar University
  • Biomedical Research Center - QU

Usage metrics

    Qatar Environment and Energy Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC