Analysis of incidental findings in Qatar genome participants reveals novel functional variants in LMNA and DSP
In order to report clinically actionable incidental findings in genetic testing, the American College of Medical Genetics and Genomics (ACMG) recommended the evaluation of variants in 59 genes associated with highly penetrant mutations. However, there is a lack of epidemiological data on medically actionable rare variants in these genes in Arab populations. We used whole genome sequencing data from 6045 participants from the Qatar Genome Programme and integrated it with phenotypic data collected by the Qatar Biobank. We identified novel putative pathogenic variants in the 59 ACMG genes by filtering previously unrecorded variants based on computational prediction of pathogenicity, variant rarity and segregation evidence. We assessed the phenotypic associations of candidate variants in genes linked to cardiovascular diseases. Finally, we used a zebrafish knockdown and synthetic human mRNA co-injection assay to functionally characterize two of these novel variants. We assessed the zebrafish cardiac function in terms of heart rate, rhythm and hemodynamics, as well as the heart structure. We identified 52 492 novel variants, which have not been reported in global and disease-specific databases. A total of 74 novel variants were selected with potentially pathogenic effect. We prioritized two novel cardiovascular variants, DSP c.1841A > G (p.Asp614Gly) and LMNA c.326 T > G (p.Val109Gly) for functional characterization. Our results showed that both variants resulted in abnormal zebrafish heart rate, rhythm and structure. This study highlights medically actionable variants that are specific to the Middle Eastern Qatari population.
Other Information
Published in: Human Molecular Genetics
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1093/hmg/ddac073
History
Language
- English
Publisher
Oxford University PressPublication Year
- 2022
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Health and Life Sciences - HBKU
- Sidra Medicine
- Qatar Genome Program (2015-2024)