Manara - Qatar Research Repository
Browse
10.1002_ese3.742.pdf (1.65 MB)

Analysis and optimization of concentrated solar power plant for application in arid climate

Download (1.65 MB)
journal contribution
submitted on 2023-03-15, 08:03 and posted on 2023-03-16, 06:22 authored by Mutaz B. Elbeh, Ahmad K. Sleiti

In this research study, the concentrated solar power (CSP) technology is reviewed for designing and optimizing a CSP tower plant for arid climate regions such as Qatar. A database for all CSP projects around the world is created, and a spreadsheet model for calculating the available solar irradiance is developed. Two software packages are used for analyzing and optimizing the entire solar thermal plant and its cost, SolarPILOT, and System Advisor Model (SAM). Both packages are validated using data from a recent power tower project. A thorough iterative optimization process was developed and applied to optimize the solar field parameters of a suggested CSP plant including tower optical height; heliostat structure width and height; number of heliostats; horizontal and vertical panels; receiver height and diameter; water consumption; cleaning schedule; maintenance; and total cost. The results confirmed the feasibility of a CSP plant on 0.45 km2 of a solar field area with 2736 heliostats that produce 8 MWe with 10 hours of thermal storage and hybrid steam condensing system. It has been found that the highest production of the plant is in July, which is 3 621 950 kWh and the highest excess of electrical energy is in March, which is 2 946 965 kWh.

Other Information

Published in: Energy Science & Engineering
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: http://dx.doi.org/10.1002/ese3.742

History

Language

  • English

Publisher

Wiley

Publication Year

  • 2021

Institution affiliated with

  • Qatar University

Usage metrics

    Manara - Qatar Research Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC