Manara - Qatar Research Repository
Browse

Adsorption of Methyl Orange from Water Using Chitosan Bead-like Materials

Download (4.19 MB)
journal contribution
submitted on 2024-02-26, 05:18 and posted on 2024-02-26, 05:19 authored by Haya Alyasi, Hamish Mackey, Gordon McKay

Natural product waste treatment and the removal of harmful dyes from water by adsorption are two of the crucial environmental issues at present. Traditional adsorbents are often not capable in removing detrimental dyes from wastewater due to their hydrophilic nature and because they form strong bonds with water molecules, and therefore they remain in the dissolved state in water. Consequently, new and effective sorbents are required to reduce the cost of wastewater treatment as well as to mitigate the health problems caused by water pollution contaminants. In this study, the adsorption behaviour of methyl orange, MO, dye on chitosan bead-like materials was investigated as a function of shaking time, contact time, adsorbent dosage, initial MO concentration, temperature and solution pH. The structural and chemical properties of chitosan bead-like materials were studied using several techniques including SEM, BET, XRD and FTIR. The adsorption process of methyl orange by chitosan bead materials was well described by the Langmuir isotherm model for the uptake capacity and followed by the pseudo-second-order kinetic model to describe the rate processes. Under the optimal conditions, the maximum removal rate (98.9%) and adsorption capacity (12.46 mg/g) of chitosan bead-like materials were higher than those of other previous reports; their removal rate for methyl orange was still up to 87.2% after three regenerative cycles. Hence, this chitosan bead-like materials are very promising materials for wastewater treatment.

Other Information

Published in: Molecules
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/molecules28186561

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU