Manara - Qatar Research Repository
Browse
1-s2.0-S0011916420315617-main.pdf (7.8 MB)

A review on lithium recovery using electrochemical capturing systems

Download (7.8 MB)
journal contribution
submitted on 2023-09-27, 11:47 and posted on 2023-10-15, 10:47 authored by Sifani Zavahir, Tasneem Elmakki, Mona Gulied, Zubair Ahmad, Leena Al-Sulaiti, Ho Kyong Shon, Yuan Chen, Hyunwoong Park, Bill Batchelor, Dong Suk Han

Resource recovery from natural reserves is appealing and Li extraction from different brines is in the forefront. Li extraction by membranes is reviewed in the literature much more than electrochemical processes. However, a very recent review thoroughly discussed Li recovery by electrochemically switchable ion exchange (ESIX). This paper reviews Li recovery by both charge transfer processes, namely electrodialysis (ED), and electro-sorption processes, namely capacitive deionization (CDI). It also reviews ESIX with a focus on performance matrices and includes comments on the technology readiness of each separation technique. These processes exhibit promising perspectives on the separation and recovery of Li both selectively and non-selectively from simulated brine solutions and Li salt solutions. Readers are provided with guidelines to choose between the processes, depending on the applied voltage, current density, specific energy consumption and purity of recovered Li. Most electrochemical lithium capturing systems (ELiCSs) have been tested at the lab scale. Therefore, future research should be directed toward pilot-scale development and parameter optimization. Furthermore, we urge the ELiCSs research community to report information in a standard form that allows meaningful comparisons and insights into the systems.

Other Information

Published in: Desalination
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.desal.2020.114883

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU
  • College of Arts and Sciences - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC