Manara - Qatar Research Repository
Browse

A novel intrusion detection framework for optimizing IoT security

Download (3.48 MB)
journal contribution
submitted on 2025-03-04, 08:24 and posted on 2025-03-11, 05:42 authored by Abdul Qaddos, Muhammad Usman Yaseen, Ahmad Sami Al-Shamayleh, Muhammad Imran, Adnan AkhunzadaAdnan Akhunzada, Salman Z. Alharthi

The emerging expanding scope of the Internet of Things (IoT) necessitates robust intrusion detection systems (IDS) to mitigate security risks effectively. However, existing approaches often struggle with adaptability to emerging threats and fail to account for IoT-specific complexities. To address these challenges, this study proposes a novel approach by hybridizing convolutional neural network (CNN) and gated recurrent unit (GRU) architectures tailored for IoT intrusion detection. This hybrid model excels in capturing intricate features and learning relational aspects crucial in IoT security. Moreover, we integrate the feature-weighted synthetic minority oversampling technique (FW-SMOTE) to handle imbalanced datasets, which commonly afflict intrusion detection tasks. Validation using the IoTID20 dataset, designed to emulate IoT environments, yields exceptional results with 99.60% accuracy in attack detection, surpassing existing benchmarks. Additionally, evaluation on the network domain dataset, UNSW-NB15, demonstrates robust performance with 99.16% accuracy, highlighting the model’s applicability across diverse datasets. This innovative approach not only addresses current limitations in IoT intrusion detection but also establishes new benchmarks in terms of accuracy and adaptability. The findings underscore its potential as a versatile and effective solution for safeguarding IoT ecosystems against evolving security threats.

Other Information

Published in: Scientific Reports
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1038/s41598-024-72049-z

Funding

We would like to extend our appreciation to Al-Ahliyya Amman University for providing all necessary support to conduct this research work.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2024

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • University of Doha for Science and Technology
  • College of Computing and Information Technology - UDST