Manara - Qatar Research Repository
Browse
10.1007_s10856-020-06420-7.pdf (3.29 MB)

A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem

Download (3.29 MB)
journal contribution
posted on 2022-11-22, 21:13 authored by Hassan Mehboob, Faris Tarlochan, Ali Mehboob, Seung-Hwan Chang, S. Ramesh, Wan Sharuzi Wan Harun, Kumaran Kadirgama

The current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18–90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed.

Other Information

Published in: Journal of Materials Science: Materials in Medicine
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: http://dx.doi.org/10.1007/s10856-020-06420-7

History

Language

  • English

Publisher

Springer Science and Business Media LLC

Publication Year

  • 2020

Institution affiliated with

  • Qatar University

Usage metrics

    Manara - Qatar Research Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC