A near-real-time global landslide incident reporting tool demonstrator using social media and artificial intelligence
The development of a system that monitors social media continuously for general landslide-related content using a landslide classification model to identify and retain the most relevant information is described and validated. The system harvests photographs in real-time from these data and tags each image as landslide or not-landslide. A training model was developed with input from computer scientists, geologists (landslide specialists) and social media specialists to establish a large image dataset that has then been applied to the live Twitter data stream. The preliminary model was developed by training a convolutional neural network on the dataset. Quantitative verification of the system's performance during a real-world deployment shows that the system can detect landslide reports with Precision = 76%. The demonstrator model is currently running live https://landslide-aidr.qcri.org/service.php; the next stage of development will incorporate stakeholder and user feedback.
Other Information
Published in: International Journal of Disaster Risk Reduction
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.ijdrr.2022.103089
History
Language
- English
Publisher
ElsevierPublication Year
- 2022
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- Qatar Computing Research Institute - HBKU