Manara - Qatar Research Repository
Browse

A Novel Technique to Diagnose Sleep Apnea in Suspected Patients Using Their ECG Data

Download (5.89 MB)
journal contribution
submitted on 2024-03-03, 05:54 and posted on 2024-03-03, 05:55 authored by Syeda Quratulain Ali, Sohail Khalid, Samir Brahim Belhaouari

Sleep Apnea is a breathing disorder that occurs while the patient is sleeping. Traditionally, Polysomnography is used to diagnose it. However, it is quite inconvenient and expensive. Because of the troublesome diagnosis, this ailment often remained undiagnosed. This paper aims at the development of such a method that provides an easy diagnostic solution to the doctors. Electrocardiogram (ECG) is one of the most common tests done at the hospitals. In this paper, we aim to develop a method which deploys ECG data to diagnose the sleep ailment, Apnea. A technique deploying wavelet packet transform on RR interval of ECG has been presented. Probability density functions of data, both when Apnea is present and when it is not, are obtained by constructing histograms of decision variable for each signal segment. From the overlapping PDFs of the normal and abnormal cases, a threshold is then derived. This helped in segregating the Apnea cases from normal cases. The stated method provided a 100% accuracy in diagnosing Sleep Apnea.

Other Information

Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2019.2904601

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC