Manara - Qatar Research Repository
Browse
- No file added yet -

A Neighborhood Framework for Resource-Lean Content Flagging

Download (786.89 kB)
journal contribution
submitted on 2024-09-03, 10:41 and posted on 2024-09-03, 10:42 authored by Sheikh Muhammad Sarwar, Dimitrina Zlatkova, Momchil Hardalov, Yoan Dinkov, Isabelle Augenstein, Preslav Nakov

We propose a novel framework for cross- lingual content flagging with limited target- language data, which significantly outperforms prior work in terms of predictive performance. The framework is based on a nearest-neighbor architecture. It is a modern instantiation of the vanilla k-nearest neighbor model, as we use Transformer representations in all its components. Our framework can adapt to new source- language instances, without the need to be retrained from scratch. Unlike prior work on neighborhood-based approaches, we encode the neighborhood information based on query– neighbor interactions. We propose two encoding schemes and we show their effectiveness using both qualitative and quantitative analysis. Our evaluation results on eight languages from two different datasets for abusive language detection show sizable improvements of up to 9.5 F1 points absolute (for Italian) over strong baselines. On average, we achieve 3.6 absolute F1 points of improvement for the three languages in the Jigsaw Multilingual dataset and 2.14 points for the WUL dataset.

Other Information

Published in: Transactions of the Association for Computational Linguistics
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1162/tacl_a_00472

History

Language

  • English

Publisher

MIT Press

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Computing Research Institute - HBKU