Manara - Qatar Research Repository
Browse

A Case Study in Qatar for Optimal Energy Management of an Autonomous Electric Vehicle Fast Charging Station with Multiple Renewable Energy and Storage Systems

Download (8.46 MB)
journal contribution
submitted on 2024-06-11, 12:15 and posted on 2024-06-12, 05:49 authored by Abdulla Al Wahedi, Yusuf Bicer

E-Mobility deployment has attained increased interest during recent years in various countries all over the world. This interest has focused mainly on reducing the reliance on fossil fuel-based means of transportation and decreasing the harmful emissions produced from this sector. To secure the electricity required to satisfy Electric Vehicles’ (EVs’) charging needs without expanding or overloading the existing electricity infrastructure, stand-alone charging stations powered by renewable sources are considered as a reasonable solution. This paper investigates the simulation of the optimal energy management of a proposed grid-independent, multi-generation, fast-charging station in the State of Qatar, which comprises hybrid wind, solar and biofuel systems along with ammonia, hydrogen and battery storage units. The study aims to assess the optimal sizing of the solar, wind and biofuel units to be incorporated in the design along with the optimal ammonia, hydrogen and battery storage capacities to fulfill the daily EV demand in an uninterruptable manner. The main objective is to fast-charge a minimum of 50 EVs daily, while the constraints are the intermittent and volatile nature of renewable energy sources, the stochastic nature of EV demand, local meteorological conditions and land space limitations. The results show that the selection of a 468 kWp concentrated photovoltaic thermal plant, 250 kW-rated wind turbine, 10 kW biodiesel power generator unit and 595 kWh battery storage system, along with the on-site production of hydrogen and ammonia, to generate 200 kW power via fuel cells can achieve the desired target, with a total halt of on-site hydrogen and ammonia production during October and November and 50% reduction during December.

Other Information

Published in: Energies
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/en13195095

Funding

Open Access funding provided by the Qatar National Library.

Qatar Foundation (210009262).

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Geographic coverage

Qatar

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC