Manara - Qatar Research Repository
Browse

3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications

Download (3.6 MB)
journal contribution
submitted on 2024-08-11, 05:48 and posted on 2024-08-11, 05:49 authored by Fawad Ali, Muammer Koc

Three-dimensional (3D) printing is a promising manufacturing platform in biomedical engineering. It offers significant advantages in fabricating complex and customized biomedical products with accuracy, efficiency, cost-effectiveness, and reproducibility. The rapidly growing field of three-dimensional printing (3DP), which emphasizes customization as its key advantage, is actively searching for functional materials. Among these materials, piezoelectric materials are highly desired due to their linear electromechanical and thermoelectric properties. Polymer piezoelectrics and their composites are in high demand as biomaterials due to their controllable and reproducible piezoelectric properties. Three-dimensional printable piezoelectric materials have opened new possibilities for integration into biomedical fields such as sensors for healthcare monitoring, controlled drug delivery systems, tissue engineering, microfluidic, and artificial muscle actuators. Overall, this review paper provides insights into the fundamentals of polymer piezoelectric materials, the application of polymer piezoelectric materials in biomedical fields, and highlights the challenges and opportunities in realizing their full potential for functional applications. By addressing these challenges, integrating 3DP and piezoelectric materials can lead to the development of advanced sensors and devices with enhanced performance and customization capabilities for biomedical applications.

Other Information

Published in: Polymers
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/polym15234470

Funding

Qatar National Research Fund (NPRP13S-0126-200172), Additive Manufacturing of Mg-based Porous Tissue Scaffolds.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC